Binary Image Segmentation Using Graph Cuts 6.854 Advanced Algorithm Term Project
نویسنده
چکیده
We implemented several maximum-flow algorithms, and applied them for segmentation of a degraded binary image. The purpose of the segmentation is to track the position of the hand in camera images for gestural interaction. The segmentation is based on the maximum a posteriori estimation which can be reformulated as a network flow problem. We compare the running time of the different algorithms we implemented together with an existing fast implementation. The results show that the fastest implementation is suitable for solving the segmentation problem in real-time.
منابع مشابه
A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملInteractive Image Segmentation using Graph Cuts
This paper presents an accurate interactive image segmentation tool using graph cuts and image properties. Graph cuts is a fast algorithm for performing binary segmentation, used to find the global optimum of a cost function based on the region and boundary properties of the image. The user marks certain pixels as background and foreground, and Gaussian mixture models (GMMs) for these classes a...
متن کاملGraph Cuts based Image Segmentation using Fuzzy Rule Based System
This work deals with segmentation of the gray scale, color and texture images using graph cuts. From an input image, a graph is constructed using intensity, color and texture profiles of the image simultaneously (i.e., intensity and texture for gray scale images and color and texture for color images). Based on the nature of image, a fuzzy rule based system is designed to find the weight that s...
متن کاملFast 4D segmentation of large datasets using graph cuts
In this paper, we propose to use 4D graph cuts for the segmentation of large spatio-temporal (4D) datasets. Indeed, as 4D datasets grow in popularity in many clinical areas, so will the demand for efficient general segmentation algorithms. The graph cuts method has become a leading method for complex 2D and 3D image segmentation in many applications. Despite a few attempts in 4D, the use of gra...
متن کاملCooperative Cuts for Image Segmentation
We propose a novel framework for graph-based cooperative regularization that uses submodular costs on graph edges. We introduce an efficient iterative algorithm to solve the resulting hard discrete optimization problem, and show that it has a guaranteed approximation factor. The edge-submodular formulation is amenable to the same extensions as standard graph cut approaches, and applicable to a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009